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Lung cancer remains the leading cause of death from cancer around 
the world1. An estimated 221,000 new cases and 158,000 deaths 
from lung cancer occurred in the United States alone in 2015 (ref. 2).  
The two major histological classes are non-small-cell lung can-
cer (NSCLC) and small-cell lung cancer (SCLC). NSCLCs mostly 
comprise lung ADCs and lung SqCCs. These two NSCLC subtypes 
have both unique and shared clinical and histopathological charac-
teristics. For example, whereas smoking is the major risk factor for 
both subtypes, approximately 10–15% of lung ADCs are observed 
in never-smokers3. Molecularly targeted therapies directed against 
receptor tyrosine kinases (RTKs) lead to dramatic responses in  
subsets of patients with lung ADCs harboring activating genomic 
alterations in the corresponding kinase genes, including EGFR, ALK, 
and ROS1 (ref. 4). Other targeted therapies under current investi-
gation are directed against activating alterations in the MET, RET, 
NTRK1, NTRK2, ERBB2, and BRAF kinases4,5.

Recent efforts have focused on comprehensively characterizing the 
changes found in the genome, epigenome, transcriptome, and pro-
teome in lung ADCs and SqCCs to discover new cancer driver genes 
that may be clinically actionable6–8. Identifying new cancer-related 

To compare lung adenocarcinoma (ADC) and lung squamous cell carcinoma (SqCC) and to identify new drivers of lung 
carcinogenesis, we examined the exome sequences and copy number profiles of 660 lung ADC and 484 lung SqCC tumor–normal 
pairs. Recurrent alterations in lung SqCCs were more similar to those of other squamous carcinomas than to alterations in lung ADCs. 
New significantly mutated genes included PPP3CA, DOT1L, and FTSJD1 in lung ADC, RASA1 in lung SqCC, and KLF5, EP300, and 
CREBBP in both tumor types. New amplification peaks encompassed MIR21 in lung ADC, MIR205 in lung SqCC, and MAPK1 in both. 
Lung ADCs lacking receptor tyrosine kinase–Ras–Raf pathway alterations had mutations in SOS1, VAV1, RASA1, and ARHGAP35. 
Regarding neoantigens, 47% of the lung ADC and 53% of the lung SqCC tumors had at least five predicted neoepitopes. Although 
targeted therapies for lung ADC and SqCC are largely distinct, immunotherapies may aid in treatment for both subtypes. 

genes can be challenging because of the large number of passenger 
mutations that can accumulate from prolonged exposure to tobacco 
carcinogens and from inherent mutagenic processes such as aberrant 
activity of APOBEC cytidine deaminases9. Profiling larger numbers 
of samples within a tumor type and combining samples across tumor 
types can help overcome this problem, by providing the additional 
statistical power necessary to distinguish important genes mutated 
at a lower frequency than other genes with passenger mutations10. In 
addition, a comprehensive comparison of recurrently altered genes 
found in lung ADC and lung SqCC has not been performed. Such 
analyses may yield insights into the similarities and differences in 
carcinogenesis between the diseases and elucidate the degree to which 
common or distinct targeted and immunological therapeutic strate-
gies can be used to treat each cancer type.

RESULTS
Comparison of somatically altered genes
To compare the somatic profiles of lung ADC and lung SqCC and 
to identify new genetic alterations, we studied 660 lung ADC–nor-
mal paired exome sequences (including 274 previously unpublished  
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cases and 227 previously described cases from The Cancer Genome 
Atlas (TCGA)6 together with 159 cases from the cohort in Imielinski 
et al.8) and 484 lung SqCC–normal paired exome sequences (includ-
ing 308 previously unpublished cases and 176 previously described 
cases from TCGA7; Supplementary Tables 1–4). Similarly to 
previous studies6,7, we observed median somatic mutation rates 
of 8.7 mutations/Mb and 9.7 mutations/Mb for lung ADCs and 
SqCCs, respectively. After excluding genes with lower median 
expression (log2 (FPKM) <6.16 for lung ADCs and <6.27 for lung 
SqCCs; Online Methods and Supplementary Fig. 1), we identi-
fied 38 genes as significantly mutated in lung ADC and 20 genes 
as significantly mutated in lung SqCC using MutSig2CV10 (q value  
< 0.1; Supplementary Tables 5 and 6). Only six genes—TP53, RB1, 
ARID1A, CDKN2A, PIK3CA, and NF1—were significantly mutated 
in both tumor types, and, of these, TP53, CDKN2A, and PIK3CA 
had a significantly higher mutation frequency in lung SqCC tumors  
(P < 0.01, Fisher’s exact test; Fig. 1a). Likewise, only 11 of 42 focal 
amplification peaks were identified as altered in both tumor types 
(Fig. 1b), and 13 of 50 focal deletion peaks were altered in both 
tumor types (Fig. 1c). Interestingly, when compared to 19 other 
tumor types from TCGA10, the lists of significantly mutated genes 
for lung ADC and lung SqCC had greater overlap with lists of sig-
nificantly mutated genes from other tumor types (>13% overlap; 
false discovery rate (FDR) q value < 0.1) than with each other (12% 
overlap; P = 0.105; Supplementary Fig. 2), consistent with previous 
pan-cancer analyses11. Recurrently mutated and amplified genes in 
lung SqCC most closely resembled the genes altered in head and 
neck squamous cell carcinoma (HNSC) and bladder cancer (BLCA), 
two other epithelial cancers with epidemiological associations with 
smoking (>25% overlap; Supplementary Fig. 2). Among these over-
lapping genes, TP53, CDKN2A, and FAT1 are specifically enriched 
for alterations in human papillomavirus (HPV)-negative HNSC12. 
In contrast, the significantly mutated genes in lung ADC were most 
similar to those in glioblastoma (GBM) and colorectal cancer (CRC) 
(FDR q value < 0.1). Although lung ADC and lung SqCC did share 
several focal deletion peaks, five of these peaks are putative fragile 
sites (shown in green in Fig. 1c). Taken together, these results suggest 
that the somatic drivers of carcinogenesis may be largely distinct in 
lung ADC and lung SqCC.

Mutational signatures in lung cancer
Various carcinogenic and cancer-related processes contribute to the 
mutational patterns observed in tumors13,14. Previous large-scale 
studies of lung cancer genomes have identified signatures associated 
with non-smoking and smoking cases6,8,15; here we extend these 
findings through the improved statistical power of our larger sample  
set. Using non-negative matrix factorization (NMF)13,16 (Online 
Methods), we identified six mutational signatures in this cohort, many 
of which are strongly correlated with previously defined signatures 
in the Catalogue of Somatic Mutations in Cancer (COSMIC) data-
base13,17 (Supplementary Figs. 3–5 and Supplementary Table 7).  
These included a UV-related signature of C>T changes at TCC or 
CCC sites (COSMIC signature 7, abbreviated SI7), a smoking-related 
signature of C>A transversions (SI4), a mismatch-repair (MMR) 
signature of C>T changes at GCG sites (SI15/SI6), two APOBEC-
related signatures of C>G or C>T changes at TCT or TCA sites 
(SI13 and SI2), and a final signature with a moderate correlation to 
COSMIC signature 5 (SI5) with putative ‘molecular clock’ properties18  
(Supplementary Fig. 5). In addition to identifying mutational signa-
tures, NMF also estimates the number of mutations contributed by 
each signature in each tumor. The estimated number of SI4 (smoking- 
related) mutations per megabase displayed a bimodal pattern in lung 
ADC but not in lung SqCC (Fig. 2a). Furthermore, the rate of SI4 
mutations per megabase was able to classify tumors into those from 
never- versus ever-smokers substantially better in lung ADC (area 
under the curve (AUC) = 0.87; Supplementary Fig. 6) than in lung 
SqCC (AUC = 0.62), suggesting that the smoking statuses for the 
18 never-smokers with lung SqCC may be inaccurate. Eighty-seven 
percent of lung ADCs from never-smokers were categorized as trans-
version low (≤0.696 SI4 mutations/Mb; P = 8.5 × 10−37, Fisher’s exact 
test; Fig. 2b and Supplementary Fig. 6). However, only 45% of trans-
version-low lung ADCs were from patients who were never-smokers 
(Fig. 2b). For each tumor, we also derived the fraction of estimated 
mutations for a signature by dividing the number of estimated muta-
tions for that signature by the sum of estimated mutations from all 
signatures. Lung SqCCs displayed significantly higher overall rates 
of SI5 mutations per megabase when compared to all lung ADCs 
(P < 0.001, Wilcoxon rank-sum test). However, lung ADCs from 
never-smokers displayed the highest fraction of estimated mutations 
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Figure 1  Distinct somatic alterations in lung ADC and lung SqCC. (a) The MutSig2CV algorithm10 was used to identify significantly mutated genes 
across 660 lung ADCs and 484 lung SqCCs. Genes with q values <0.1 were considered to be significantly mutated. The q value for each gene in the 
lung ADC cohort is plotted against the respective q value in the lung SqCC cohort. The majority of significantly mutated genes were unique to either 
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from this signature on average (Fig. 2c and 
Supplementary Fig. 7). In lung SqCC, we 
also observed moderate associations of tumor 
stage with SI5 activity and total mutation rate 
(P < 0.01; Supplementary Fig. 8).

The mutational profiles of three lung SqCCs (~1% of lung SqCCs) 
exhibited a pattern of UV-related mutations (SI7) commonly observed 
in melanoma and displayed a significantly higher mutation rate of 
somatic single-nucleotide variants (SSNVs) and somatic dinucleotide 
polymorphisms (DNPs) when compared to the other lung tumors  
(P < 0.01) but not higher rates of indels (P > 0.05; Fig. 2d). One of 
these patients (TCGA-18-3409) had a previous history of basal cell 
carcinoma in the forehead, raising the possibility that metastasis from 
the skin to the lung had occurred. The other two lung SqCCs with this 
signature may also represent squamous cell skin carcinomas meta-
static to the lung. The mutational profiles for another seven tumors 
(four lung ADCs and three lung SqCCs) exhibited an MMR-like sig-
nature (SI15/SI6) commonly observed in CRCs with microsatellite 
instability (MSI) (Fig. 2e)13. These tumors had significantly higher 
rates of both SSNVs and short indels when compared to all other lung 
tumors with expression data (P < 0.001). They also displayed lower 
expression levels of the MMR gene MLH1 (P = 0.011), suggesting a 
potential etiology for this signature in lung.

New significantly mutated genes
Comparing the significantly mutated genes to those in other tumor 
types from TCGA Pan-Cancer study10 showed that there were several  

genes significantly mutated exclusively in lung ADC, includ-
ing STK11, RBM10, KEAP1, RAF1, RIT1, and MET (MutSig2CV  
q value < 0.1; Fig. 3a and Supplementary Table 5). NFE2L2, KDM6A, 
RASA1, NOTCH1, and HRAS were significantly mutated in lung 
SqCC but not in other cancer types (excluding HNSC and BLCA) 
(Fig. 3b and Supplementary Table 6). Genes that reached modest 
statistical significance in lung ADC that have been observed previ-
ously to be altered in lung cancer or in other tumor types included 
AKT1, with a recurrent mutation encoding p.Glu17Lys, CDK4, with a 
recurrent mutation encoding p.Arg24Leu, and DNMT3A (P < 0.005; 
Supplementary Table 5). The new significantly mutated genes exclu-
sive to lung ADC and which are not altered in other tumor types 
included PPP3CA, which encodes the catalytic subunit for the calcium- 
dependent phosphatase, calcineurin. The mutations in PPP3CA clus-
tered in the sequence encoding the autoinhibitory domain near the C 
terminus of the protein, suggesting that they may be gain-of-function 
alterations (Fig. 4a). In addition, mutations mapping to the autoinhib-
itory domain also tended to co-occur with activating KRAS mutations 
(P = 0.033), suggesting a potential relationship between the K-Ras and 
calcineurin signaling pathways. Significantly mutated methyltrans-
ferase genes included MLL3 (KMT2C) and SETD2. A new gene in this 
class was the H3K79 methyltransferase DOT1L, which was mutated 
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Figure 2  Comparison of mutational signatures 
in lung cancer. Six mutational signatures 
were identified using NMF on 192 distinct 
mutation types. (a) The estimated number of 
SI4 (smoking-related) mutations per megabase 
in each tumor displayed a bimodal pattern in 
lung ADC (red). TV-L, transversion low; TV-H, 
transversion high. (b) Lung ADCs categorized 
as transversion low were enriched for clinically 
annotated lifelong never-smokers (P = 8.5 × 10−37).  
(c) The estimated number of mutations for each 
signature per megabase (top) and the fraction of 
estimated mutations for each signature (bottom) 
were averaged across lifelong never-smokers 
(NS), longer-term former smokers (LFS), 
shorter-term former smokers (SFS), and current 
smokers (CS) for both lung ADCs and lung 
SqCCs (excluding the UV-high and MMR-high 
tumors discussed below). (d) Three lung SqCCs 
had a high number of estimated mutations 
from a UV-associated signature commonly 
observed in melanoma. These tumors displayed 
a significantly higher overall rate of SSNVs and 
DNPs when compared to all other lung tumors 
(P < 0.01). (e) The mutational profiles for 
another seven tumors exhibited an MMR-like 
signature commonly observed in MSI CRCs. 
These tumors had significantly higher rates  
of both SSNVs and short indels (P < 0.001),  
as well as lower levels of MHL1 expression  
(P = 0.011). Asterisks indicate significance 
levels from Wilcoxon rank-sum tests: *P < 0.05,  
**P < 0.01, ***P < 0.001. Each boxplot  
shows the median (middle bar), first quartile 
(bottom of the box), and third quartile (top  
of the box). Boxplot whiskers demark 1.5  
times the interquartile range or minimum–
maximum values.
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in 3% of lung ADCs with enrichment for 
truncating mutations (Fig. 4a). Recurrent 
mutations in lung ADC have previously been 
reported in splicing factors such as U2AF1, 
and loss-of-function mutations have been 
identified in the RNA-binding protein RBM10 (ref. 8). In the current 
data set, a cap methyltransferase, FTSJD1 (also known as CMTR2), 
was significantly mutated and enriched for frameshift mutations 
(Fig. 4a). We also examined genes for other known proteins in this 
class and found recurrent mutations in SF3B1 (ref. 19) and SNRPD3 
(Supplementary Fig. 9). EGFR mutations were enriched in females, 
and SMARCA4 mutations were enriched in males (FDR q value < 0.1; 
Supplementary Table 8). RBM10 mutations were modestly enriched 
in males, as previously reported (q value = 0.219)6. The new signifi-
cantly mutated genes in lung SqCC that were enriched for frameshift 
mutations (P < 0.001) included RASA1, whose protein product is 
p120GAP20 (Fig. 4b). CUL3, whose protein product is a known 
interaction partner of KEAP1, also reached statistical significance 
in the lung SqCC cohort21 (Fig. 4b). RB1 mutations were enriched 
in females, whereas PASK mutations were exclusive to males (FDR  
q value < 0.1; Supplementary Table 9). We did not observe sig-
nificant associations between mutation status and patient survival 
or tumor stage after correction for multiple-hypothesis testing 
(Supplementary Tables 10–13). Controlling for tumor stage did 
not identify additional significant associations between mutation  
status and survival.

Previous studies have shown that joint analysis of different tumor 
types can yield additional statistical power to detect low-frequency 
events, even if the tumor types are from vastly different tissues of ori-
gin and/or etiologies10. Additionally, although the individual drivers 
may be distinct between two tumor types, pathways such as mitogen-
activated protein (MAP) kinase signaling are often altered similarly in 
both. We therefore hypothesized that combining the lung ADC and 
lung SqCC tumor cohorts (into a pan-lung cohort) would identify addi-
tional recurrent somatic pathway alterations common to both tumor 
types. We found 14 genes significantly mutated in the pan-lung cohort 
that were not significantly mutated in either individual tumor type  
(q value < 0.1; Supplementary Fig. 10 and Supplementary Table 14).  
Many of these genes are involved in epigenetic regulation or immune-
related pathways. KLF5, a transcription factor critical for lung devel-
opment22, contained a new recurrent mutation mapping to the 
zinc-finger domain, which was observed in both ADCs and SqCCs 
(Fig. 4c). A regulator of KLF5, the E3 ubiquitin ligase FBXW7 (ref. 23),  

was also significantly mutated in the lung SqCC and pan-lung cohorts 
but did not co-occur with KLF5 mutations. A super-enhancer duplica-
tion associated with increased KLF5 expression has also recently been 
reported in HNSC by our group24, and KLF5 has been reported to be 
recurrently mutated in BLCA25. The paralogs EP300 and CREBBP had 
a mutational hotspot region mapping to the histone acetyltransferase 
(HAT) domain. All missense mutations mapping to the HAT domain 
and other loss-of-function alterations outside this domain were non-
overlapping for these two proteins. For sites with sufficient sequenc-
ing depth in the RNA-seq analysis (power >95%), we observed an 
SSNV validation rate of 88%.

New somatic copy number alterations
With a larger sample size, we had better resolution to detect new 
copy number changes and ascertain the putative target genes of focal 
amplifications and deletions. For some peaks that still contained many 
genes, we inferred the most likely target gene by examining the same 
peak in a pan-cancer copy number analysis across 11 tumor types26 
that included a subset of the lung cancers from this set. The most 
significantly focally amplified genes in lung ADC were NKX2-1, MYC, 
TERT, MCL1, and MDM2 (Fig. 5a and Supplementary Table 15),  
and peaks at SOX2, CCND1, WHSC1L1–FGFR1, MYC, and EGFR 
were among the most significant for lung SqCC (Fig. 5b and 
Supplementary Table 16). Amplification peaks previously described 
in other tumor types but less characterized in lung tumors included 
KAT6A, ZNF217, and MYCL1 for lung ADC (Fig. 5a) and IGF1R, 
KDM5A, PTP4A1–PHF3, and MYCL1 for lung SqCC (Fig. 5b). 
CCND3 was specifically amplified in lung ADC, whereas an amplifi-
cation peak near MIR21–TUBD1 (Fig. 5c) was also observed in breast 
cancer26. MIR21 expression has been shown to be a prognostic factor 
for early-stage ADC27,28. Likewise, new amplification peaks for lung 
SqCC included YES1, encoding a Src family non-receptor protein 
kinase, and MIR205 (Fig. 5d). Expression of MIR205 has been used 
to distinguish lung SqCCs from other NSCLC types29, suggesting that 
amplification of this microRNA (miRNA) may represent a lineage-
specific alteration similar to SOX2 amplification. Finally, combined 
pan-lung copy number analysis identified additional amplification 
peaks around MAPK1 (Fig. 5a–d and Supplementary Table 17).
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Focal deletion peaks in lung ADC included the chromatin modi-
fier genes SMARCA4 and ARID2 (Supplementary Fig. 11 and 
Supplementary Table 18), which were also significantly mutated 
and enriched for loss-of-function mutations. New lung SqCC focal 
deletions observed in other tumor types included ZMYND11, 
CREBBP, ROBO1, USP22, and KDM6A (Supplementary Fig. 11 and 
Supplementary Table 19). B2M (β2 microglobulin), encoding a com-
ponent of the MHC complex, was focally deleted in both tumor types, 
was enriched for loss-of-function mutations in both tumor types  
(P < 0.01), and was significantly mutated in the pan-lung analysis (FDR 
q value = 0.006). Combined pan-lung copy number analysis identified 
another focal deletion peak around TRAF3 (Supplementary Table 20),  
which was also reported in HNSC12. In general, mRNA expression  

was significantly associated (P < 0.05) with copy number levels for 
target genes (Supplementary Figs. 12 and 13). We did not observe 
substantial batch effects within or across tumor types in either the 
mRNA expression or copy number variation data (Supplementary 
Figs. 14 and 15).

Identifying RTK–Ras–Raf drivers in lung ADC
In lung ADC, mutually exclusive alterations have been characterized 
in components of the RTK–Ras–Raf signaling pathway. These altera-
tions are of particular interest because of the dramatic responses that 
have been observed to RTK inhibitors in clinical trials such as those 
for patients with lung ADC harboring EGFR mutation or ALK or ROS1 
translocations30. However, many lung ADCs do not exhibit a known 
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activating mutation in the pathway, raising the 
possibility that additional genes with low-fre-
quency somatic events are yet to be identified. 
To further understand the somatic landscape 
of this pathway, we first characterized altera-
tions among known pathway members and 
then identified new genes with mutually 
exclusive alterations. New alterations in 
known pathway genes included a recurrent 
in-frame insertion in MAP2K1 and a fusion 
of MET with its neighboring gene, CAPZA2 
(Fig. 6 and Supplementary Table 21)31.  
Previously reported TRIM24–NTRK2 and 
KIF5B–MET fusions31 were observed in 
tumors without other known activating alterations. Interestingly, 
another NTRK2 fusion with TP63 was also found in a lung SqCC 
(Fig. 6 and Supplementary Table 21). As observed previously, high 
levels of MET and ERBB2 amplification were enriched in tumors 
without other known activating alterations in this pathway (P < 0.01; 
Supplementary Fig. 16)6. A single lung ADC (TCGA-49-4512) 
harbored an activating EGFR alteration resulting in kinase domain 
duplication32. By manual review, we found additional canonical muta-
tions in KRAS, EGFR, or ERBB2 in 17 tumors and complex indels 
in EGFR or MET in 11 tumors, some of which have been previously 
reported6,8,33 (Supplementary Table 22).

Lung ADCs that had an activating SSNV, indel, amplification, or 
gene fusion affecting a known RTK–Ras–Raf driver6,34,35 were des-
ignated ‘oncogene positive’ (n = 418), whereas the remaining lung 
ADCs were considered ‘oncogene negative’ (n = 242). For the pur-
poses of this analysis, we did not include NF1-altered tumors in the 
oncogene-positive group, as mutations in this gene are not entirely 
mutually exclusive with alterations in other genes related to the RTK–
Ras–Raf pathway. To identify additional potential drivers in this path-
way, we determined whether genes that were significantly mutated 
in any of the MutSig2CV analyses (Supplementary Tables 5, 6,  
and 14) or that are important in regulation of the Ras pathway36 were 
enriched for alterations in oncogene-negative samples using a Fisher’s 
exact test. In total, 15 genes were significantly enriched for altera-
tions among oncogene-negative samples, including the known Ras 
pathway components SOS1 and RASA1 and the Rho kinase pathway  
components VAV1 and ARHGAP35 (q value < 0.1; Fig. 7a,c and 

Supplementary Table 23). SOS1 is a guanine-nucleotide-exchange 
factor (GEF) bound to the RTK complex and assists in the activation 
of Ras proteins37. Recurrent mutations were observed encoding a 
p.Asn233Tyr substitution in the autoinhibitory domain (DH) of SOS1 
in four lung ADCs, and the p.Asp309Tyr substitution in the same 
region has been reported in Noonan syndrome38,39 (Supplementary 
Fig. 17). Similarly, VAV1 is a GEF for the Rho family GTPases. 
Interactions between the calponin homology (CH), acidic (Ac), and 
pleckstrin homology (PH) domains are important for autoinhibition 
of the catalytic Dbl homology domain40. The p.Ser67Tyr substitution 
is located near the interface of the CH, Ac, and PH domains, and 
mutagenesis affecting this site has been shown to increase overall 
GEF activity40 (Supplementary Fig. 17). RASA1 and ARHGAP35 
(p190RhoGAP) encode GTPase-activating proteins (GAPs) for the 
Ras and Rho kinases, respectively, and were each enriched for loss-of-
function mutations (P < 0.01). We also identified amplification peaks 
near FGFR1–WHSC1L1 (8p11.21), PDGFRA–KIT–KDR (4q12), and 
MAPK1 (22q11) that were only significant in the oncogene-negative  
tumor set (q value < 0.25; Fig. 7b,c). In total, 499 (76%) lung ADCs 
displayed an alteration in known or putative RTK–Ras–Raf driver 
genes (Fig. 7c). Moreover, 193 of 227 (85%) lung ADCs that previously 
underwent secondary expert pathological review and had RNA-seq  
data available for fusion analysis6 harbored a predicted activating 
alteration in the RTK–Ras–Raf pathway.

New co-occurrences included MET amplifications and NF1 muta-
tions (P = 0.019; Supplementary Fig. 16). Additionally, high-level  
EGFR amplification significantly overlapped with activating EGFR 
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Figure 5  Significant amplifications in lung 
cancer. (a) The q value for each amplification 
peak in lung ADC is plotted against the best 
q value for the same region across nine other 
non-lung tumor types26. (b) The q values 
for amplification peaks in lung SqCC are 
compared against seven other tumor types, 
excluding HNSC and BLCA. The size of each 
point is proportional to the frequency of focal 
amplification. Brackets around gene names 
indicate that the most likely target gene was 
inferred from pan-cancer copy number analysis 
across 11 tumor types or from the combined 
pan-lung copy number analysis. Black points 
in the lower-right quadrants indicate genes 
significantly altered by amplifications in another 
cancer type but not in lung ADC and/or lung 
SqCC. (c,d) Gene expression is plotted against 
focal copy number ratios for new amplification 
peaks that include CCND3, MIR21, and MAPK1 
in lung ADC (c) and YES1, MIR205, and 
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mutations (P = 1.9 × 10−8)41,42, and STK11 mutations signifi-
cantly overlapped with activating KRAS mutations (P = 1.1 × 10−6;  
Fig. 7c)43,44. Furthermore, 28 lung ADCs that remain oncogene 
negative for the RTK–Ras–Raf pathway harbored STK11 mutations  
(Fig. 7c), suggesting the possibility of an additional, hitherto unrec-
ognized KRAS-related genome alteration complementary to STK11 
mutation in these cancer samples.

Assessment of neoantigen load and recurrence
Because of the increasing interest in the use of immune checkpoint 
inhibitors in lung cancer45,46, we comprehensively analyzed the poten-
tial immunogenic properties of the mutational landscape. For each 
patient, we evaluated the ability of the protein sequence resulting from 

each somatic missense mutation to be processed and presented to 
immune cells by any one of the patient-specific HLA alleles47,48. We 
then assessed the association between the number of immunogenic 
mutations (resulting in neoepitopes or neoantigens) and clinical char-
acteristics and identified the most common neoepitopes observed in 
lung cancer. Both nonsynonymous mutation and neoepitope counts 
were not significantly different between lung ADCs and lung SqCCs 

from ever-smokers (Fig. 8a,b). However, 
these counts were significantly lower in lung 
ADCs from never-smokers in comparison 
to lung ADCs from ever-smokers (P < 0.001, 
Wilcoxon rank-sum test; Fig. 8a,b) and were 
associated with overall smoking history  
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Figure 6  Fusions involving MET and NTRK2. Two fusions of MET were 
identified that retained the sequence encoding the RTK domain, including 
one with its neighboring gene, CAPZA2. This fusion most likely arose via 
tandem duplication resulting in the 3′ end of MET being fused with the 
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alterations in RTK–Ras–Raf signaling. Another NTRK2 fusion with TP63 
was also found in a lung SqCC. For each fusion, the expression of exons 
retained in the putative fusion transcript was relatively higher than the 
expression of exons not in the putative fusion transcript (as indicated  
by the gray box).
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in lung ADCs but not lung SqCCs (P < 0.001, Kruskal–Wallis 
test; Supplementary Fig. 18). Alterations predicted to generate 
neoepitopes in at least four tumors included PIK3CA p.Glu542Lys, 
NFE2L2 p.Glu79Gln, B-Raf p.Gly466Val, EGFR p.Gly719Ala, and 
several alterations in TP53, including p.Val157Phe, p.Gly154Val, 
p.Arg175Gly, and p.Pro278Ala (Fig. 8c). A gene not previously impli-
cated in lung cancer, C3orf59 (also known as MB21D2), harbored 
a recurrent mutation encoding p.Gln311Glu, which has predicted 
neoepitope properties (Fig. 8c). Overall, 47% of lung ADC and 53% of 
lung SqCC samples had at least five predicted neoepitopes, suggesting 
great potential for immunotherapy.

DISCUSSION
We examined the exome sequences and copy number profiles of 1,144 
lung cancers to explore similarities and differences between lung ADC 
and lung SqCC. Consistent with studies of gene expression11, this 
comparison showed that both mutated genes and recurrent somatic 
copy number alterations are largely distinct for the two lung cancer 
types. The similarity between lung SqCCs, HNSCs, and a subset of 
BLCAs was also observed when 12 tumor types were reclassified using 
clustering of five molecular data types11. These differences suggest 
that somatic alterations can have different oncogenic potential in dif-
ferent cellular contexts. Thus, cancers arising from developmentally 
similar cells of origin across different tissues will be more similar 
than cancers arising from different cells of origin within an anatomi-
cally defined tissue. As we had only one tumor sample per patient,  
we were not able to analyze intratumoral heterogeneity, as has been 
done in other studies49,50.

Several new focal amplification peaks containing protein- 
coding genes, including MAPK1, YES1, and CCND3, were identified. 
Interestingly, we also found two peaks that contained or were near 
miRNA genes (MIR21 in lung ADC and MIR205 in lung SqCC). We have 
also recently reported the duplication of a noncoding super-enhancer 
that results in increased MYC expression24. As the mutational analyses 
in this study focused on whole-exome sequencing of protein-coding 
genes, we were not able to examine mutations in noncoding genes or 
regulatory elements. Future studies examining large numbers of whole 
genomes from lung cancer may be better suited for discovery of other 
oncogenic alterations in noncoding genes or regulatory elements.

Our study has uncovered multiple significantly mutated genes in 
the RTK–Ras–Raf pathway, including newly identified genes such 
as RASA1, SOS1, and VAV1. Previous studies examining smaller 
numbers of lung tumors were not able to detect recurrent muta-
tions in SOS1 (refs. 8,39). The fact that we were able to detect these 
mutants further highlights the usefulness of increasing sample size to 
detect rare events. Because we did not have matching RNA-seq data 
for every tumor, we may be underestimating the rates of oncogenic 
fusions or MET exon 14 skipping events. As 15–25% of lung ADCs 
still do not have a known, detectable alteration in the RTK–Ras–Raf 
pathway, we may yet be underpowered to find additional rare, recur-
rent mutations in known and new pathway components. Similar 
considerations may be relevant for other pathways. For example,  

we identified new epigenetic modifier mutations in CREBBP and 
EP300, previously shown in SCLC51.

Finally, we examined the immunogenicity of individual mis-
sense mutations to understand more fully the association between 
neoepitope loads, overall nonsynonymous mutation rates, and clini-
cal variables such as smoking status. Some highly recurrent muta-
tions were predicted to result in neoepitopes. Future studies may  
further unravel the relationship between these candidates and clini-
cal responses to immune checkpoint inhibitors and customized  
vaccine therapies.

URLs. Picard tools, http://broadinstitute.github.io/picard/; MutSig 
algorithm, http://www.broadinstitute.org/cancer/cga/MutSig; 
Indelocator, http://www.broadinstitute.org/cancer/cga/indelocator; 
Broad Institute Firehose pipeline, http://www.broadinstitute.org/
cancer/cga/; Oncotator, http://www.broadinstitute.org/oncotator/; 
power calculations, http://www.tumorportal.org/; PRADA fusions, 
http://www.tumorfusions.org/; mutational signatures, http://www.
mathworks.com/matlabcentral/fileexchange/38724; University of 
California Santa Cruz Cancer Genomics Hub, http://cghub.ucsc.
edu/; TCGA Data Portal, http://tcga-data.nci.nih.gov/tcga/; Pan-Lung 
Tumor Portal, http://pubs.broadinstitute.org/panlung/.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Binary alignment (BAM) files for all TCGA sam-
ples6,7 can be downloaded from the University of California Santa 
Cruz Cancer Genomics Hub using the UUIDs in Supplementary 
Table 2. Additional clinical and molecular data for TCGA samples 
can be accessed via the TCGA Data Portal (see URLs).

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Sample collection and pathology review. Sample collection and DNA 
sequencing were performed for the Imielinski et al. and TCGA cohorts as 
previously described6–8. All specimens were obtained from patients with 
appropriate consent and with approval from the relevant institutional review 
boards. All patients were naive to treatment with the exception of four patients 
with lung SqCC and three patients with lung ADC who received neoadju-
vant treatment before resection (Supplementary Table 2). Initial pathologi-
cal review was performed at the contributing tissue source sites, where each 
tumor was given an initial histological classification. After shipment of the 
frozen tissue to the Biospecimen Core Resource (BCR), one or two additional 
frozen sections were cut and stained with hematoxylin and eosin to confirm 
the histological classification of the original tissue source site. 159 of the lung 
ADCs from Imielinski et al., 289 of the lung ADCs from TCGA, and 213 of the 
lung SqCCs from TCGA had also undergone additional histological review by 
an expert pathology committee led by W. Travis (Memorial Sloan Kettering 
Cancer Center) in previous studies6–8. Nucleic acid extraction and molecular 
quality control were performed at the BCR.

DNA sequencing, alignment, and mutation calling. Exome capture was 
performed using the Agilent SureSelect Human All Exon 50Mb kit followed 
by Illumina paired-end sequencing. Reads were processed using the Picard 
pipeline6. This pipeline uses BWA for read alignment, Picard tools for marking 
duplicates, and the Genome Analysis Toolkit (GATK) for realignment around 
small indels as well as recalibration of base quality52. Contamination in tumor 
exomes was estimated using ContEst53. Only tumors with <5% contamination, 
an available SNP6.0 array for copy number analysis, and a valid ABSOLUTE54 
solution were considered in the final analysis. The final sample set included 
227 previously described lung ADCs from TCGA6, 274 newly reported lung 
ADCs from TCGA, and 159 lung ADCs from the cohort of Imielinski et al.8, 
together with 176 previously described lung SqCCs from TCGA7 and 308 
newly reported lung SqCCs from TCGA. SSNVs and indels were called using 
MuTect55 and Indelocator (see URLs), respectively. These algorithms compare 
the tumor to the matched normal sample to exclude germline variants. Somatic 
calls were excluded if found in a panel of over 2,900 normal exomes, as previ-
ously described10. Coding mutation patterns can be viewed for individual 
genes in the Pan-Lung Tumor Portal (see URLs).

Identification of significantly mutated genes. Significantly mutated genes 
were identified using MutSig2CV, which combines P values from tests for 
high mutational frequency relative to the background mutation rate (PCV), 
clustering of mutations within a gene (PCL), and enrichment of mutations 
at evolutionarily conserved sites (PFN)10. For 660 lung ADCs, we had 100% 
power to detect genes mutated in 10% of patients and 73% power to detect 
genes mutated in 5% of patients, assuming a mutation rate of 8.7 mutations/
Mb10. For 484 lung SqCCs, we had 100% power to detect genes mutated in 
10% of patients and 41% power to detect genes mutated in 5% of patients, 
assuming a mutation rate of 9.7 mutations/Mb10. To reduce the number of 
hypotheses tested in the MutSig2CV analysis, we excluded genes that exhibited 
low expression across tumors with relatively high purity. The median log2 
(FPKM) value for each gene was obtained for 185 ADCs and 238 SqCCs that 
had a purity estimate from ABSOLUTE of >50% and available RNA-seq data 
(Supplementary Fig. 1). For each tumor type, a mixture model of two normal 
distributions was fit in R using the mclust package v4.2. Genes with 95% prob-
ability of belonging to the cluster with higher expression were considered in 
multiple-hypothesis correction of the MutSig2CV combined P values. One 
gene, TRERF1, was excluded from the final results because closer inspection 
of its mutations showed a recurrent frameshift deletion that was likely a false 
positive, as all of these mutations had low allelic fractions (<1.5%) and had no 
supporting reads in matching RNA-seq data. A one-sided Fisher’s exact test 
was used to determine whether the ratio of loss-of-function mutations (includ-
ing nonsense, frameshift, and de novo out-of-frame start codon mutations) 
to other mutations for a given gene was significantly higher than the ratio of 
loss-of-function mutations to other mutations across all other genes.

Identification of recurrent copy number changes. DNA was hybridized onto 
Affymetrix SNP6.0 arrays, and signal intensities were normalized as previously 

described6. Segmentation was performed using the Circular Binary Segmentation 
algorithm56 followed by Ziggurat Deconstruction to infer the length and ampli-
tude of each segment. Recurrent peaks for focal somatic copy number altera-
tion were identified using GISTIC 2.0 (ref. 57). A peak was considered to be 
focally amplified or deleted within a tumor if the GISTIC 2.0–estimated focal 
copy number ratio was greater than 0.1 or less than −0.1, respectively. Purity 
and ploidy were estimated using ABSOLUTE54. Two peaks were considered the 
same across tumor types if (i) the known target gene of each peak was the same 
or (ii) the genomic location of the peaks overlapped after adding 1 Mb to the 
start and end locations of each gene. For the second criterion, only peaks that  
contained fewer than 25 genes and were smaller than 10 Mb were considered.

RNA sequencing for expression and fusion analyses. Of the 1,144 tumors exam-
ined in this study, 495 lung ADCs and 476 lung SqCCs had corresponding RNA-
seq data from TCGA. RNA reads were generated, aligned to the hg19 genome 
assembly with Mapsplice58, and normalized with RSEM59 to FPKM expres-
sion estimates, as previously described6. Expression values less than 1 FPKM  
were set to 1, and all data were log2 transformed. Skipping of MET exon 14 
was identified with juncBASE60 as previously described6. Lists of fusions were 
obtained from previous studies6,31,61. Fusions for additional tumors were iden-
tified with the PRADA pipeline62. To plot the exonic expression of fusion 
transcripts, exon expression levels were measured and normalized to RPKM 
values, as previously described6. Expression for an individual exon was first 
z score transformed across all tumors within each tumor type. Subsequently, 
all exons for a gene were z score transformed again within each tumor. The 
transcript annotations used for this analysis included ENST00000397752 
for MET, ENST00000361183 for CAPZA2, ENST00000302418 for KIF5B, 
ENST00000323115 for NTRK2, ENST00000343526 for TRIM24, and 
ENST00000354600 for TP63.

Identification of mutational signatures. NMF was used to deconvolute a 
K × G matrix of mutation catalogs into a K × N matrix of mutational proc-
esses and an N × G matrix of mutational exposures (where G is the number 
of lung cancer exomes, K is the number of mutational states, and N is the 
number of estimated mutational processes)16. Code for NMF was obtained 
from MATLAB Central (see URLs) and run using the nnmf function from the 
MATLAB Statistics Toolbox. We used 6 mutation types with 16 different tri-
nucleotide contexts and 2 transcriptional strands, for a total of 192 mutational 
states. The number of possible signatures was varied from one to ten, and 
signature stability was assessed via bootstrapping as previously described16. 
Within each tumor, the fraction of estimated mutations for a signature was 
derived by dividing the number of estimated mutations for that signature by 
the sum of the estimated mutations from all signatures.

Predicting immunogenicity. HLA alleles were called with POLYSOLVER47 
for all lung cancer exomes. For each tumor, epitope predictions were made by 
considering interaction between confidently called HLA alleles and single-
residue missense alterations. Separate lists were generated consisting of wild-
type and mutant peptides of 8, 9, 10, and 11 amino acids in length, as these are 
known to be the possible lengths for peptides presented by human MHC class I 
molecules63. We then predicted MHC binding affinity for each of the peptides 
as described previously48. First, a proteasome processing score was calculated 
using the NetChop program64. Then, we used the NetMHC65, NetMHCpan66, 
SMM67, and SMMPMBEC68 methods to predict MHC binding affinity values 
for each peptide and used the median value across all algorithms as a compos-
ite measure of binding strength. We also defined the neoepitope ratio for each 
mutant and wild-type peptide pair as the median affinity value for the mutant 
peptide divided by the median affinity value for the wild-type peptide. This 
value was found to be a reliable comparator of the relative immunogenicities 
of the mutant versus wild-type peptide sequences48. Peptide pairs were further 
considered if the mutant peptide displayed a processing score ≥0.7, a median 
affinity value ≥0.01, and a neoepitope ratio ≥1 and the mRNA transcript of 
the gene was expressed in the RNA-seq data for that tumor (among the 15,000 
most highly expressed genes in each tumor). Because epitope binding is HLA 
dependent, the previous steps were performed for each of the called MHC I 
proteins. After this, only peptides predicted to be the best epitopes for each 
mutation were considered.
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Statistical comparisons. Nonparametric tests such as the Wilcoxon rank-sum 
test (comparison between two groups) or the Kruskal–Wallis test (comparison 
between more than two groups) were used for continuous variables unless 
otherwise noted. The Fisher’s exact test was used when comparing two cat-
egorical variables. In total, longitudinal data on survival were available for 481 
patients with lung ADC and 473 patients with lung SqCC from TCGA. The 
Cox proportional hazards model was used to examine associations between 
patient survival and mutation status, with and without controlling for tumor 
stage. Correction for multiple-hypothesis testing was performed with the 
Benjamini–Hochberg procedure.

Sample collection and pathology review. Clinical and molecular data from 
Imielinski et al.8 are available in the database of Genotypes and Phenotypes 
(dbGaP) under accession phs000488.v1.p1.

52.	DePristo, M.A. et al. A framework for variation discovery and genotyping  
using next-generation DNA sequencing data. Nat. Genet. 43, 491–498  
(2011).

53.	Cibulskis, K. et al. ContEst: estimating cross-contamination of human  
samples in next-generation sequencing data. Bioinformatics 27, 2601–2602 
(2011).

54.	Carter, S.L. et al. Absolute quantification of somatic DNA alterations in human 
cancer. Nat. Biotechnol. 30, 413–421 (2012).

55.	Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and 
heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

56.	Olshen, A.B., Venkatraman, E.S., Lucito, R. & Wigler, M. Circular binary segmentation 
for the analysis of array-based DNA copy number data. Biostatistics 5, 557–572 
(2004).

57.	Mermel, C.H. et al. GISTIC2.0 facilitates sensitive and confident localization of the 
targets of focal somatic copy-number alteration in human cancers. Genome Biol. 
12, R41 (2011).

58.	Wang, K. et al. MapSplice: accurate mapping of RNA-seq reads for splice junction 
discovery. Nucleic Acids Res. 38, e178 (2010).

59.	Li, B. & Dewey, C.N. RSEM: accurate transcript quantification from RNA-Seq data 
with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

60.	Brooks, A.N. et al. Conservation of an RNA regulatory map between Drosophila and 
mammals. Genome Res. 21, 193–202 (2011).

61.	Yoshihara, K. et al. The landscape and therapeutic relevance of cancer-associated 
transcript fusions. Oncogene 34, 4845–4854 (2015).

62.	Torres-García, W. et al. PRADA: pipeline for RNA sequencing data analysis. 
Bioinformatics 30, 2224–2226 (2014).

63.	Alberts, B. Molecular Biology of the Cell (Garland Science, 2002).
64.	Nielsen, M., Lundegaard, C., Lund, O. & Keşmir, C. The role of the proteasome in 
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